Harness the power of MCP servers with Amazon Bedrock Agents

AI agents extend large language models (LLMs) by interacting with external systems, executing complex workflows, and maintaining contextual awareness across operations. Amazon Bedrock Agents enables this functionality by orchestrating foundation models (FMs) with data sources, applications, and user inputs to complete goal-oriented tasks through API integration and knowledge base augmentation. However, in the past, connecting […]

Generate compliant content with Amazon Bedrock and ConstitutionalChain

Generative AI has emerged as a powerful tool for content creation, offering several key benefits that can significantly enhance the efficiency and effectiveness of content production processes such as creating marketing materials, image generation, content moderation etc. Constitutional AI and LangGraph‘s reflection mechanisms represent two complementary approaches to ensuring AI systems behave ethically – with […]

Minimize generative AI hallucinations with Amazon Bedrock Automated Reasoning checks

Foundation models (FMs) and generative AI are transforming enterprise operations across industries. McKinsey & Company’s recent research estimates generative AI could contribute up to $4.4 trillion annually to the global economy through enhanced operational efficiency, productivity growth of 0.1% to 0.6% annually, improved customer experience through personalized interactions, and accelerated digital transformation. Today, organizations struggle […]

AWS App Studio introduces a prebuilt solutions catalog and cross-instance Import and Export

AWS App Studio is a generative AI-powered service that uses natural language to build business applications, empowering a new set of builders to create applications in minutes. With App Studio, technical professionals such as IT project managers, data engineers, enterprise architects, and solution architects can quickly develop applications tailored to their organization’s needs—without requiring deep […]

Build agentic systems with CrewAI and Amazon Bedrock

This post is co-authored with Joao Moura and Tony Kipkemboi from CrewAI. The enterprise AI landscape is undergoing a seismic shift as agentic systems transition from experimental tools to mission-critical business assets. In 2025, AI agents are expected to become integral to business operations, with Deloitte predicting that 25% of enterprises using generative AI will […]

Amazon Bedrock Guardrails image content filters provide industry-leading safeguards, helping customer block up to 88% of harmful multimodal content: Generally available today

Amazon Bedrock Guardrails announces the general availability of image content filters, enabling you to moderate both image and text content in your generative AI applications. Previously limited to text-only filtering, this enhancement now provides comprehensive content moderation across both modalities. This new capability removes the heavy lifting required to build your own image safeguards or […]

Integrating custom dependencies in Amazon SageMaker Canvas workflows

When implementing machine learning (ML) workflows in Amazon SageMaker Canvas, organizations might need to consider external dependencies required for their specific use cases. Although SageMaker Canvas provides powerful no-code and low-code capabilities for rapid experimentation, some projects might require specialized dependencies and libraries that aren’t included by default in SageMaker Canvas. This post provides an […]

Generate training data and cost-effectively train categorical models with Amazon Bedrock

In this post, we explore how you can use Amazon Bedrock to generate high-quality categorical ground truth data, which is crucial for training machine learning (ML) models in a cost-sensitive environment. Generative AI solutions can play an invaluable role during the model development phase by simplifying training and test data creation for multiclass classification supervised […]

Enable Amazon Bedrock cross-Region inference in multi-account environments

Amazon Bedrock cross-Region inference capability that provides organizations with flexibility to access foundation models (FMs) across AWS Regions while maintaining optimal performance and availability. However, some enterprises implement strict Regional access controls through service control policies (SCPs) or AWS Control Tower to adhere to compliance requirements, inadvertently blocking cross-Region inference functionality in Amazon Bedrock. This […]

Amazon SageMaker JumpStart adds fine-tuning support for models in a private model hub

Amazon SageMaker JumpStart is a machine learning (ML) hub that provides pre-trained models, solution templates, and algorithms to help developers quickly get started with machine learning. Within SageMaker JumpStart, the private model hub feature allows organizations to create their own internal repository of ML models, enabling teams to share and manage models securely within their […]