Develop a RAG-based application using Amazon Aurora with Amazon Kendra

Generative AI and large language models (LLMs) are revolutionizing organizations across diverse sectors to enhance customer experience, which traditionally would take years to make progress. Every organization has data stored in data stores, either on premises or in cloud providers. You can embrace generative AI and enhance customer experience by converting your existing data into […]
Optimizing AI responsiveness: A practical guide to Amazon Bedrock latency-optimized inference

In production generative AI applications, responsiveness is just as important as the intelligence behind the model. Whether it’s customer service teams handling time-sensitive inquiries or developers needing instant code suggestions, every second of delay, known as latency, can have a significant impact. As businesses increasingly use large language models (LLMs) for these critical tasks and […]
Track LLM model evaluation using Amazon SageMaker managed MLflow and FMEval

Evaluating large language models (LLMs) is crucial as LLM-based systems become increasingly powerful and relevant in our society. Rigorous testing allows us to understand an LLM’s capabilities, limitations, and potential biases, and provide actionable feedback to identify and mitigate risk. Furthermore, evaluation processes are important not only for LLMs, but are becoming essential for assessing […]